1.1 ENGLISH AND COMMUNICATION SKILLS - I

Rationale

The curriculum aims to develop the use of English for three major purposes social interaction, academic achievement and professional use. Listening, speaking, reading, and writing skills cannot be thought of as independent skills. They are generally perceived as interdependent where one skill often activates the other skills as well as the paralinguistic skills required for the achievement of effective communication. It is believed that the most effective way to achieve these purposes is through the adoption of a thematic, integrated, content-based approach to teaching and learning.

DETAILED CONTENTS

1. INTRODUCTION

Theory: (10 Hrs.)
- Definition, Introduction and Process of Communication
- Objectives of Communication
- Essentials of Communication
- Media and Modes of Communication
- Channels of Communication
- Barriers to Communication
- Body language
- Humour in Communication
- Silence in Communication

Note: Teachers are expected to give practical examples, while teaching above topics

2. LISTENING

Theory: Significance, essentials, barriers and effectiveness of Listening. (04 Hrs.)

Practicals: The following exercises to be conducted in practical sessions:
- Using pre-recorded CDs/DVDs with pre-listening exercise to prepare students about what they are going to hear and comprehension based on the audio
- Note-taking
- Listening for the main ideas
- Assessing listening proficiency

3. SPEAKING

Theory: (06 Hrs.)
- Significance, essentials, barriers and effectiveness of Speaking
- Introduction to phonetics (Dictionary: meaning and pronunciation of words as given in the standard dictionary using symbols of phonetics)
Practicals: The following exercises to be conducted in practical sessions:

- Exercises on pronunciation of common words as given in the standard dictionary using symbols of phonetics
- Greetings for different occasions
- Introducing oneself, others and leave taking (talking about yourself)
- Just a minute (JAM) sessions: Speaking extempore for one minute on given topics
- Paper reading before an audience (reading unseen passages)
- Situational Conversation/role-playing with feedback, preferably through video recording
- Reading aloud of Newspaper headlines and important articles
- Improving pronunciation through tongue twisters

4. READING

Theory: (10 Hrs.)
- Techniques of reading: Skimming, Scanning, Intensive and Extensive Reading
- Comprehension, Vocabulary enrichment and grammar exercises based on the following selective readings:

Section-I
- Homecoming – R.N. Tagore
- The Selfish Giant - Oscar Wilde
- The Stick – Justice Surinder Singh

Section-II
- I Have A Dream – Martin Luther King
- My struggle for An Education- Booker T Washington
- Life Sketch of Sir Mokshagundam Visvesvarayya

Section-III
- Ozymandias – P.B. Shelley
- Daffodils – William Wordsworth
- Stopping by Woods on a Snowy Evening – Robert Frost

- Comprehension exercises on unseen passages
- Exercises on interpretation of tables, charts, graphs, signs and pictures etc.

Practicals:
- Paper reading
- Poetry recitation
- Reading newspaper headlines

5. WRITING

Theory: (06 Hrs.)
- Significance, essentials and effectiveness of writing
- Paragraph of 100-120 words
Practicals:

- Exercises on spellings
- Group exercises on writing paragraphs on given topics

6. VOCABULARY

Theory:
- Vocabulary of commonly used words
- Pair of words (Words commonly confused and misused)

Practicals:
- To look up words in a Dictionary: meaning and pronunciation of words as given in the standard dictionary using symbols of phonetics
- To seek information from an Encyclopedia

7. GRAMMAR

Theory:
- Identification of parts of speech
- Using a word as different parts of speech
- Correction of in-correct sentences
- Tenses
- Voice

Note: Teachers are expected to give practical examples, while teaching above topics

RECOMMENDED BOOKS
1. Spoken English (2nd Edition) by V Sasikumar & PV Dhamija; Published by Tata MC Graw Hills, New Delhi.
2. Spoken English by MC Sreevalsan; Published by M/S Vikas Publishing House Pvt. Ltd; New Delhi.
3. Spoken English –A foundation course (Part-I & Part-II) By Kamlesh Sdanand & Susheela Punitha; Published by Orient BlackSwan, Hyderabad
4. Practical Course in English Pronunciation by J Sethi, Kamlesh Sadanand & DV Jindal; Published by PHI Learning Pvt. Ltd; New Delhi.
5. A Practical Course in Spoken English by JK Gangal; Published by PHI Learning Pvt. Ltd; New Delhi.
6. English Grammar, Composition and Usage by NK Aggarwal and FT Wood; Published by Macmillan Publishers India Ltd; New Delhi.
8. Business Communication by Urmila Rani & SM Rai; Published by Himalaya Publishing House, Mumbai.
9. Business Communication Skills by Varinder Kumar, Bodh Raj & NP Manocha; Published by Kalyani Publisher, New Delhi.
10. Professional Communication by Kavita Tyagi & Padma Misra; Published by PHI Learning Pvt. Ltd; New Delhi.
11. Business Communication and Personality Development by Bsiwajit Das and Ipseeta Satpathy; Published by Excel Books, Delhi.
12. Succeeding Through Communication by Subhash Jagota; Published by Excel Books, Delhi.
13. Communication Skills for professionals by Nira Konar; Published by PHI Learning Pvt. Ltd; New Delhi.
15. Effective Technical Communication By M. Ashraf Rizwi; Published by Tata MC Graw Hills, New Delhi.
16. Basic Communication Skills for Technology by Andrea J Rutherford; Published by Pearson Education, New Delhi.
17. English & Communication Skills for students of Science & Engineering by SP Dhanavel; Published by Orient BlackSwan, Hyderabad.
18. Technical Communication- Principles & Practices by Meenakshi Raman & Sangeetha Sharma; Published by Oxford University Press, New Delhi.
19. Technical English by S. Devaki Reddy & Shreesh Chaudhary; Published by Macmillan Publishers India Ltd; New Delhi.
20. Advanced Technical Communication, by Kavita Tyagi & Padma Misra; Published by PHI Learning Pvt. Ltd; New Delhi.
21. Communication Skills for Engineer & Scientist by Sangeeta Sharma & Binod Mishra; Published by PHI Learning Pvt. Ltd; New Delhi.

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>04</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td>06</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>06</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>06</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>
1.2 APPLIED MATHEMATICS - I

RATIONALE

Applied Mathematics forms the backbone of engineering students. Basic elements of algebra, trigonometry, coordinate geometry have been included in the curriculum as foundation course. This course will develop analytical abilities to make exact calculations and will provide continuing educational base to the students.

Note:- Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

DETAILED CONTENTS

1. Algebra (30 hrs)
 1.1 Complex Numbers: Complex number, representation, modulus and amplitude. De-movier's theorem, its application in solving algebraic equation.
 1.2 Basics and properties of logarithms and its applications in solving problems related to basic logarithmic formulas.
 1.3 Geometrical progression, its nth term and sum of n terms and to infinity. Application of Arithmetic progression and Geometrical progression to Engineering problem such as maximum possible output of the machine, vibration of the spring, finding out capacity of tank etc.
 1.4. Partial fractions (linear factors, repeated linear factors, non-reducible quadratic factors excluding repeated factors)
 1.5 Permutations and Combinations: Value of \(nPr \) \(nCr \). Simple problems of formulation of words from given alphabets (with and without repetition), circular permutations etc.
 1.6 Binomial theorem (without proof) for positive integral index (expansion and general form); binomial theorem for any index (expansion without proof) first and second binomial approximation with applications to engineering problems

2. Trigonometry (25 hrs)
 2.1 Concept of angles, measurement of angles in degrees, grades and radians and their conversions. Applications of angles such as angle subtended by an arc, diameter of moon etc.
 2.2 T-Ratios of Allied angles (without proof), Sum, difference formulae and their applications (without proof). Product formulae (Transformation of product to sum, difference and vice versa). T-Ratios of multiple angles, sub-multiple angles (2A, 3A, A/2).
2.3 Graphs of Sin x, Cos x, Tan x and e^x

2.4 Applications of Trigonometric terms in engineering problems such as to find an angle of elevation, height, distance etc.

3. Co-ordinate Geometry (25 hrs)

3.1 Cartesian and Polar coordinates (two dimensional), conversion from cartesian to polar coordinates and vice-versa, distance between two points (cartesian co-ordinates), section formulae.

3.2 Area of triangle when its vertices are given, co-ordinates of centroid, in center of a triangle when the vertices are given, simple problems on locus.

3.3 Equation of straight line in various standard forms (without proof), intersection of two straight lines, angle between two lines. Parallel and perpendicular lines, perpendicular distance formula.

3.4 General equation of a circle and its characteristics. To find the equation of a circle, given:

* Centre and radius
* Three points lying on it
* Coordinates of end points of a diameter

3.5 Equation(s) of a straight line, circle, and conics (ellipse, parabola and hyperbola) and their application in solving engineering problems.

INSTRUCTIONAL STRATEGY

Basic elements of algebra, trigonometry and coordinate geometry can be taught in the light of their applications in the field of engineering and technology. By laying more emphasis on applied part, teacher can also help in providing a good continuing education base to the students.

RECOMMENDED BOOKS

3. Applied Mathematics by RD Sharma
SUGGESTED DISTRIBUTION OF MARKS FOR FACILITATING PAPER SETTER

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Topic</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Algebra</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Trigonometry</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Co ordinate Geometry</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>
1.3 APPLIED PHYSICS – I

L T P
4 - 2

RATIONALE

Applied physics includes the study of a large number of diverse topics all related to things that go on in the world around us. It aims to give an understanding of this world both by observation and by prediction of the way in which objects will behave. Concrete use of physical principles and analysis in various fields of engineering and technology are given prominence in the course content.

Note: Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

DETAILED CONTENTS

1. Units and Dimensions (8 hrs)
 1.1 Physical quantities
 1.2 Units - fundamental and derived units, systems of units (FPS, CGS, MKS and SI units)
 1.3 Dimensions and dimensional formulae of physical quantities
 1.4 Dimensional equations and principle of homogeneity, applications to conversion from one system of units to another, checking the correctness of physical relations and derivation of simple physical relations, limitations of dimensional analysis
 1.5 Error in measurement, random and systematic errors
 1.6 Application of units and dimensions in measuring length, diameter, Circumference, volume, surface area etc. of metallic and non metallic blocks, wires, pipes etc (at least two each).

2. Force and Motion (10 hrs)
 2.1 Scalar and vector quantities – examples, addition and multiplication (scalar product and vector product) of vectors
 2.2 Force, resolution and composition of forces: resultant, parallelogram law of forces, equilibrium of forces
 2.3 Newton’s Laws of motion: concept of momentum, Newton’s laws of motion and their engineering applications, derivation of force equation from Newton’s second law of motion; conservation of momentum, impulse. Simple numerical problems
 2.4 Circular motion: angular displacement, angular velocity and angular acceleration
 2.5 Relation between linear and angular variables (velocity and acceleration)
2.6 Centripetal force (derivation) and centrifugal force with its application such as banking of roads, bending of cyclist, motion in vertical circle etc

2.7 Application of various forces in lifts, cranes, large steam engines and turbines,

3. Waves and Vibrations (10 hrs)

3.1 Wave motion: transverse and longitudinal wave motion with examples, sound and light waves, velocity, frequency and wave length of a wave (relationship \(v = n \lambda \)) and their applications

3.2 Wave equation, \(y = r \sin(\omega t) \), phase, phase difference, superposition of waves and their applications.

3.3 Simple Harmonic Motion (SHM): definition, expression for displacement, velocity, acceleration, time period, frequency in S.H.M.

3.4 Free, forced and resonant vibrations with examples

3.5 Acoustics of buildings – reverberation, reverberation time, echo, noise, coefficient of absorption of sound, methods to control reverberation time and their applications

3.6 Ultrasonics – production (magnetostriction and piezoelectric methods) and their engineering and medical applications

4 Rotational Motion (6 hrs)

4.1 Concept of translatory and rotating motion with examples

4.2 Definitions of torque, angular momentum and their relationship

4.3 Conservation of angular momentum (qualitative) and its examples

4.4 Moment of inertia and its physical significance, radius of gyration, Theorems of parallel and perpendicular axes (statements), Moment of inertia of rod, disc, ring and sphere (Formulae only).

4.5 Application of rotational motions in transport vehicles, trains and aero plane turbine/engine.

5 Work, Power and Energy (10 hrs)

5.1 Work: definition and its SI units

5.2 Work done in moving an object on horizontal and inclined plane (incorporating frictional forces) with its application

5.3 Power: definition and its SI units, calculation of power with numerical problems
5.4 Energy: Definition and its SI units: Kinetic energy and Potential energy with examples and their derivation

5.5 Principle of conservation of mechanical energy (for freely falling bodies), transformation of energy from one form to another with its application

5.6 Friction: concept, types and its engineering applications.

5.7 Application of Friction in brake system of moving vehicles, trains, aero planes and other objects.

6 Properties of Matter (10 hrs)

6.1 Elasticity: definition of stress and strain, different types of modulus of elasticity, stress – strain diagram, Hooke’s law with its applications

6.2 Pressure: definition, its units, atmospheric pressure, gauge pressure, absolute pressure, U-tube, manometers and barometer gauges and their applications

6.3 Surface tension: concept, its units, angle of contact, measurement of surface tension by capillary tube method, applications of surface tension, effect of temperature and impurity on surface tension

6.4 Fluid motion, stream line and turbulent flow, Equation of Continuity, Bernauli’s Theorem and their applications.

6.5 Viscosity and coefficient of viscosity: Buoyant force, buoyancy, Stoke’s Law and derivation of terminal velocity, effect of temperature on viscosity and its application in hydraulic systems.

7 Thermometry (10 hrs)

7.1 Difference between heat and temperature on the basis of K.E. of molecules

7.2 Principles of measurement of temperature and different scales of temperature and their relationship

7.3 Resistance thermometers and Pyrometers with their field applications such as Thermocouple, Bi-metallic thermometer.

7.4 Expansion of solids, liquids and gases, coefficient of linear, surface and cubical expansions and relation amongst them

7.5 Modes of transfer of heat (Conduction, convection and radiation with examples)

7.6 Co-efficient of thermal conductivity, determination of thermal conductivity of good conductor (Searle’s method) and bad conductor (Lee’s disc method)

7.7 Application of various systems of thermometry in refrigeration and air-conditioning etc.
LIST OF PRACTICALS (to perform minimum ten experiments)

1. To find the diameter of wire using a screw gauge
2. To find volume of solid cylinder and hollow cylinder using a vernier calipers
3. To determine the thickness of glass strip and radius of curvature using a spherometer
4. To verify parallelogram law of forces
5. To find the time period of a simple pendulum and determine the length of second’s pendulum.
6. To find the frequency of a tuning fork by a sonometer
7. To find the velocity of sound by using resonance apparatus at room temperature.
8. To find the Moment of Inertia of a flywheel about its axis of rotation
9. To find the surface tension of a liquid by capillary rise method
10. To determine the atmospheric pressure at a place using Fortin’s Barometer
11. To determine the viscosity of glycerin by Stoke’s method
12. To determine the coefficient of linear expansion of a metal rod
13. To find the coefficient of thermal conductivity of Bakelite sheet (bad conductor) by Lee’s Disc Method
14. To determine the coefficient of thermal conductivity of a copper strip using Searle’s Thermal Conductivity apparatus.

INSTRUCTIONAL STATREGY

Teacher may use various teaching aids like models, charts, graphs and experimental kits etc. for imparting effective instructions in the subject. The teacher should explain about field applications before teaching the basics of mechanics, work power and energy, rotational motion, properties of matter etc. to develop proper understanding of the physical phenomenon. Use of demonstration can make the subject interesting and develop scientific temper in the students.

RECOMMENDED BOOKS

2. Text Book of Physics for Class XII (Part-I, Part-II) N.C.E.R.T
10. Applied Physics I & II by RA Banwait & R Dogra, Eagle Parkashan, Jalandhar
11. Applied Physics by Jasmer Kaur and Bhupinder Singh, Lords Publications, Jalandhar City
12. Physics by Nelcon and Parker Publishers UK

SUGGESTED DISTRIBUTION OF MARKS FOR FACILITATING PAPER SETTER

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Topic</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Units and Dimensions</td>
<td>08</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Force and Motion</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Waves and Vibrations</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Rotational Motion</td>
<td>06</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Work, Power and Energy</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Properties of Matter</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Thermometry</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>
RATIONALE

Every branch of engineering is expanding greatly. The contributions of chemicals and chemical products are playing an important role in the field of engineering, biotechnology, agriculture and pharmacology etc. The numbers of such chemical products are exponentially increasing each successive year. This results in enhancing the responsibility of engineers while choosing engineering materials for converting them into finished products. Now a days, choosing engineering material is not only based on conventional qualitative and quantitative testing of their chemical composition and behavior under service conditions, but also based on environmental and eco-friendly factors. To achieve such objectives it is essential to apply applied aspects of chemistry. In order to educate and train Engineers and skilled work force applied chemistry syllabus for diploma students in various engineering and technology courses is designed to develop scientific temper and appreciate physical and chemical properties of engineering materials, which are used in their professional career. Best efforts should be made to teach and train the skilled engineers and work force by imparting essential knowledge required from this subject through demonstrations, and minor projects.

Note:- Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

DETAILED CONTENTS

1. Basic Concepts of Chemistry (10 hrs)
 1.1 Units and Dimensions, dimensional formulas- dimensional analysis principle of homogeneity of dimensions and their limitations, derived units (with special reference to pressure, volume, temperature, density, specific gravity, surface tension, viscosity and conductivity, thermodynamic parameters-significance and applications)
 1.2 Matter, element, compound and mixtures, atoms, molecules, ions, symbols and formulae, Atomic mass (A), atomic number (Z) isotopes, isobars, isotone (recapitulation only)
 1.3 Mole concept, solution, standard solution, methods to express concentration of solution 1.3.1 molar mass, molar volume of gases, strength of solutions in grams per liter, molarity (M), molality (m), mass and volume percentages and mole fraction
 1.4 Chemical equations, thermo-chemical equations, balancing of chemical equations and simple stoichiometric calculations.
 1.5 Numerical problems based on mole concept and molarity.

2. Atomic Structure, Periodic Table and Chemical Bonding (12 hrs)
 2.1 Fundamental particles- electrons, protons and neutrons
 2.2 Bohr’s model of atom and its limitations (qualitative treatment only).
 2.3 Wave particle duality and Heisenberg’s uncertainty principle (elementary idea only)
 2.4 Modern concept of atom, definition of orbit and orbitals, shapes of s and p orbitals only, quantum numbers (significance only), electronic configuration of elements up to atomic number 30 on the basis of Aufbau Principle, Pauli’s Principle and Hund’s Rule
2.5 Modern periodic law and periodic table, groups and periods.
2.6 Classification of elements into s, p, d, and f blocks (periodicity in properties are excluded)
2.7 Chemical bond and cause of bonding.
2.8 Ionic bond, valence bond approach of covalent bond, hybridization (sp\(^3\), sp\(^2\) and sp) sigma (σ) and pi (π) bonds.
2.9 Metallic bonding – electric, magnetic and dielectric properties based on Band model

3. Water (10 hrs)
3.1 Sources of water, impurities in water (dissolved –gases, salts and suspended),
3.2 Hardness of water, types of hardness, degree of hardness, units of hardness-ppm, \(^{o}\)Cl, \(^{o}\)Fr – numerical problems
3.3 Disadvantages of using hard water in domestic and in industries: Laundry work (action of soap on water), paper, textile and beverage industries.
3.4 Boiler feed water and its quality - causes and prevention of
3.4.1 Scale and sludge formation,
3.4.2 Priming and foaming
3.4.3 Boiler corrosion,
3.4.4 Caustic embitterment
3.5 Softening of hard water by
3.5.1 Ion exchange process- dematerialized water advantages and limitations of this method
3.5.2 Desalting of sea water by reverse osmosis (RO) method
3.5.3 Calgon process
3.6 Characteristics of drinking water and ICMR, ISI –quality criteria
3.7 Water analysis: Quantitative analysis of hardness by EDTA method, alkalinity, and estimation of total dissolved solids (TDS)-numerical problems
3.8 Enlist applications of various kinds of water in engineering and chemical industry.

4. Gas laws, Terminology of Thermodynamics and Equilibrium (14 hrs)
4.1 Definition of gas and perfect gas, gas laws- Boyle’s Law, Charles law & Avagadro’s law, Gas constant (R).
4.2 Terminology of Thermodynamics- thermodynamic system, surroundings, types of systems, extensive and intensive properties, state of a system, state functions, isothermal, adiabatic reversible, irreversible spontaneous and non spontaneous processes, meaning of ΔE, ΔH, ΔS and ΔG, free energy of spontaneous and non spontaneous processes (mathematical derivations are excluded)
4.3 Elementary idea of zeroth, 1st, 2nd, and 3rd laws of thermodynamics (without mathematical derivation)
4.4 Applications of free energy change (ΔG) criteria (in metallurgy and electric work without any mathematical derivation)
4.5 Equilibrium state and its significance statement of Le-Chatelier’s principle, equilibrium constant (K) and its applications..
4.6 Electrolytes, non electrolytes, ionization in aqueous solutions, degree of ionization, ionic product of water (K\(_{w}\))
4.7 Concept of pH, pH- scale and industrial applications of pH
4.8 Definitions - acids, bases, neutralization and acid base titrations, indicators and choice of indicators for acid base titration.

4.9 Buffer (acidic, basic and neutral) solutions, enlist applications of buffer solution

4.10 Simple numerical problems (only on 4.1, 4.5. 4.6 and 4.7 sections)

5. Electrochemistry (10 hrs)

5.1 Electronic concept of oxidation and reduction, redox reactions
5.2 Electrolytes, non-electrolytes and electrolysis,
5.3 Faraday’s Laws of electrolysis and applications in electrometallurgy and electroplating in automobile
5.4 Standard reduction potential (SRP), activity series, electrochemical cell and their e.m.f
5.5 Chemistry of commercial electrochemical cells
 5.5.1 primary cells - Daniel cell and dry cell
 5.5.2 secondary cell - lead acid storage cell, Wetson-cadmium cell, nicad battery, Lil battery, Hg – button cell and Ag- button cell
 5.5.3 Fuel cells
5.6 Simple numerical problems related (to only 5.1, 5.3 and 5.4 sections).

6. Organic Chemistry (06 hrs)

6.1 Tetra covalency of carbon in carbon compounds, catenation (definition only)
6.2 Classification of organic compounds on the bases of functional group
6.3 IUPAC nomenclature of simple organic compounds (containing one functional group only) and their common names (if any)

LIST OF PRACTICALS

1. Introduction to volumetric analysis, apparatus used in volumetric analysis and molarity based calculations.
2. Preparation of standard solution of oxalic acid \{(COOH)\textsubscript{2}.2H\textsubscript{2}O\} or potassium permanganate (KMnO\textsubscript{4}) or potassium dichromate (K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7})
3. To verify the physical (state, colour, odour solubility, boiling and melting points) properties and few chemical properties of ionic (e.g. NaCl) and covalent (kerosene oil or any other such compound may be given) compounds.
4. To determine strength of given solution of sodium hydroxide by titrating against standard solution of oxalic acid using phenolphthalein indicator.
5. To determine total acid number of given oil volumetrically
6. To prepare cuprammonium \{Cu(NH\textsubscript{3})\textsubscript{4}SO\textsubscript{4}\} and estimate cupric ion in the given solution of copper sulphate solution by spectrophotometeric method.
7. To distinguish between aldehyde and ketone by Tollén’s reagent (benzaldehyde and acetone may be used)
8. To verify the first law of electrolysis. (Electrolysis of copper sulphate solution using copper electrode).
9. To prepare iodoform from ethanol or acetone
10. To prepare bakelite
11. To prepare the Mohr’s salt from ferrous sulphate and ammonium sulphate.
13. Estimation of total alkalinity in the given sample of water by titrating against standard solution of sulfuric acid

INSTRUCTIONAL STRATEGY

Teacher may take help of various models and charts while imparting instructions to make the concepts clear. More emphasis may be laid on discussing and explaining practical applications of various chemical processes and reactions. In addition, students should be encouraged/motivated to study those processes in more details, which may find practical applications in their future professional life.

RECOMMENDED BOOKS

4. Progressive Applied Chemistry – I by Dr. G.H. Hugar, Eagle Prakashan, Jalandhar
6. Applied Chemistry-I by Dr.P.K. Vij & Shiksha Vij, Lords Publications, Jalandhar
8. Rapid Chemistry for peak performance by Anil Ahlawat, MTE books, 503, Taj Apartments, Ring Road, New Delhi (year 2008)

SUGGESTED DISTRIBUTION OF MARKS FOR FACILITATING PAPER SETTER

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Topic</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Concepts of Chemistry</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Atomic Structure Periodic Table and Chemical</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Bonding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3 Water</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4 Gas laws, Language of Thermodynamics and</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Equilibrium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Electrochemistry</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6 Organic Chemistry</td>
<td>06</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>
1.5 ENGINEERING DRAWING - I

RATIONALE

Drawing is the language of engineers and technicians. Reading and interpreting engineering drawing is their day to day responsibility. The subject is aimed at developing basic graphic skills in the students so as to enable them to use these skills in preparation of engineering drawings, their reading and interpretation. The emphasis, while imparting instructions, should be to develop conceptual skills in the students following BIS SP 46 – 1988.

Note:
1. First angle projection is to be followed
2. Minimum of 16 sheets to be prepared
3. Instructions relevant to various drawings may be given along with appropriate demonstrations, before assigning drawing practice to students

DETAILED CONTENTS

1. Introduction to Engineering Drawing
 1.1 Introduction to drawing instruments, materials and layout of drawing sheets.

2. Free Hand Sketching and Lettering (03 sheets)
 2.1 Different types of lines in Engineering drawing as per BIS specifications
 2.2 Practice of vertical, horizontal and inclined lines, geometrical figures such as triangles, rectangles, circles, ellipses and curves, hexagonal, pentagon with the help of drawing instruments.
 2.3. Free hand lettering (Alphabet and numerals) – lower case and upper case, single stroke, vertical and inclined at 75 degree in different standards, series of 3, 5, 8 and 12 mm heights in the ratio of 7:4

3. Dimensioning Technique (01 sheet)
 3.1 Necessity of dimensioning, method and principles of dimensioning (mainly theoretical instructions)
 3.2 Dimensioning of overall sizes, circles, threaded holes, chamfered surfaces, angles, tapered surfaces, holes, equally spaced on P.C.D., counter sink holes, counter bored holes, cylindrical parts, narrow spaces and gaps, radii, curves and arches

4. Scales 02 sheets)
4.1 Scales - their need and importance (Theoretical instructions).
4.2 Drawing of plain and diagonal scales

5. Projection (05 sheets)

5.1 Theory of projections (Elaborate theoretical instructions)

5.2 Projection of Points
 5.2.1. Production of a point in the first quadrant.
 5.2.2. Projection of a point in the third quadrant.

5.3 Projection of Straight Line
 5.3.1. Line parallel to both the planes
 5.3.2. Line perpendicular to any one of the reference plane
 5.3.3. Line inclined to any one of the reference plane.

5.4 Drawing 3 views of given objects (Non-symmetrical objects may be selected for this exercise)

5.5 Drawing 6 views of given objects (Non-symmetrical objects may be selected for this exercise)

5.6 Identification of surfaces on drawn views and objects drawn

5.7 Exercises on missing lines and views

Note: At least one sheet in third angle projection

6. Sections (02 sheets)

6.1 Importance and salient features, Methods of representing sections, conventional sections of various materials, classification of sections, conventions in sectioning

6.2 Drawing of full section, half section, partial or broken out sections, Offset sections, revolved sections and removed sections.

6.3 Drawing of different conventions for materials in section, conventional breaks for shafts, pipes, rectangular, square, angle, channel, rolled sections

6.4 Exercises on sectional views of different objects.

7. Isometric Views (03 sheets)

7.1 Fundamentals of isometric projections (Theoretical instructions)

7.2 Isometric views of combination of regular solids like cylinder, cone, cube and prism..

RECOMMENDED BOOKS

1. A Text Book of Engineering Drawing by Surjit Singh, Dhanpat Rai & Co., Delhi
2. Engineering Drawing by PS Gill, SK Kataria & Sons, New Delhi
3. Elementary Engineering Drawing in First Angle Projection by ND Bhatt, Charotar Publishing House
4. Engineering Drawing I & II by JS Layall, Eagle Parkashan, Jalandhar
1.6 WORKSHOP PRACTICE - I

RATIONALE

In order to have a balanced overall development of diploma engineers, it is necessary to integrate theory with practice. General workshop practices are included in the curriculum in order to provide hand on experience about use of different tools and basic manufacturing practices.

This course aims at developing general manual and machining skills in the students. Besides above, the development of dignity of labour, precision, safety at work place, team working and development of right attitude are the other objectives.

DETAILED CONTENTS (PRACTICALS)

The following shops are included in the syllabus:

1. Carpentry and Painting Shop
2. Fitting Shop
3. Electric Shop

Note:

The contents of various shops prescribed under workshop Practice –I are same as that of General Workshop Practice-I which is common for most of engineering diploma programmes except for Computer Engineering and Information Technology.

The instructor is to first explain the introductory part given at the beginning under each shop followed by demonstration and practice by students.

1. Carpentry and Painting Shop

1.1 Introduction to various types of wood such as Deodar, Kail, Partal, Teak, Hollack, Sheesham, Champ, etc. (Demonstration and their identification).

1.2 Demonstration, function and use of commonly used hand tools. Care, maintenance of tools and safety measures to be observed.

 Job I Marking, sawing, planning and chiseling & their practice

1.3 Introduction to various types of wooden joints, their relative advantages and uses.

 Job II Preparation of half lap joint
Job III Preparation of Mortise and Tenon Joint

1.4 Demonstration of various methods of painting wooden items.

Job IV Preparation of surface before painting including primer coat

Job V Painting Practice by brush/roller/spray

2. Fitting Shop

2.1 Introduction to fitting shop tools, common materials used in fitting shop, Identification of materials. (e.g. Steel, Brass, Copper, Aluminium etc.). Identification of various sections of steel viz. Flat, Angle, Tee, Channel, Bar Girder, Square, Z-Section, etc.

2.2 Description and demonstration of various types of work benches. Holding devices and files. Precautions while doing filing work.

Job I Marking of job, use of marking tools and measuring instruments.

Job II Filing a dimensioned rectangular or square piece of an accuracy of ± 0.25mm

Job III Filing practice (Production of flat surfaces) Checking by straight edge.

2.3 Description and demonstration of simple operation of hack-sawing, demonstration and description of various types of blades and their specifications, uses and method of fitting the blade.

Job IV Making a cutout from a square piece of MS Flat using Hand hacksaw.

3. Electric Shop

3.1 Study, demonstration and identification of common electrical materials such as wires, cables, switches, fuses, ceiling roses, battens, cleats and allied items, tools and accessories.

3.2 Study of electrical safety measures and demonstration about use of protective devices.

Job I Identification of phase, neutral and earth of domestic appliances and their connection to two pin/three pin, plugs.

Job II Preparation of a house wiring circuit using fuse, switches, socket, holder, ceiling rose etc. by batten wiring and PVC casing and capping
3.3 Study of common electrical appliances such as electric iron, electric kettle, ceiling fan, table fan, electric mixer, electric Geyser, desert cooler etc.

3.4 Introduction to the construction of a Lead-acid battery and its working.

Job III Installation of a battery and to connect two or more batteries in series and in parallel

Job IV Charging of a battery and testing it with the help of hydrometer and Cell Tester

RECOMMENDED BOOKS

5. Workshop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New Delhi
1.7 BASICS OF INFORMATION TECHNOLOGY

RATIONALE

Information technology has great influence on all aspects of life. Primary purpose of using computer is to make the life easier. Almost all work places and living environment are being computerized. The subject introduces the fundamentals of computer system for using various hardware and software components. In order to prepare diploma holders to work in these environments, it is essential that they are exposed to various aspects of information technology such as understanding the concept of information technology and its scope; operating a computer; use of various tools of MS office; using internet etc. form the broad competency profile of diploma holders. This exposure will enable the students to enter their professions with confidence, live in a harmonious way and contribute to the productivity.

Note:

Explanation of Introductory part should be dovetailed with practical work. Following topics may be explained in the laboratory along with the practical exercises. There will not be any theory examination.

TO BE EXPLAINED THROUGH DEMONSTRATION

1. Information Technology – its concept and scope, applications of IT, impact of computer and IT in society.
2. Computers for information storage, information seeking, information processing and information transmission
3. Computer Application in office, book publishing, data analysis, accounting, investment, inventory control, graphics, Air and Railway Ticket reservation, robotics, Military, banks, Insurance financial transactions and many more
4. Elements of computer system, computer hardware and software; data types – numeric data, alphanumeric data; contents of a program, processing
5. Computer organization, block diagram of a computer, CPU, memory
6. Input devices; keyboard, Scanner, mouse etc; output devices; VDU and Printer, Plotter
7. Electrical requirements, inter-connections between units, connectors and cables
8. Secondary storage; magnetic disks – tracks and sectors, optical disk (CD, CD-RW and DVD), primary and secondary memory: RAM, ROM, PROM etc., Capacity; device controllers, serial port, parallel port, system bus
9. Installation concept and precautions to be observed while installing the system and software
10. Introduction about Operating Systems such as MS DOS, Windows, Windows NT etc. as an interface to Computer System
11. Special features, various commands of MS word and MS-Excel, MS PowerPoint
12. About the internet – server types, connectivity (TCP/IP, shell); applications of internet like: e-mail and browsing
13. Various Browsers like Internet explorer, Mozilla Firefox, WWW (World wide web); hyperlinks; HTTP (Hyper Text Transfer Protocol); FTP (File Transfer Protocol)
15. Ethics and information Technology
16. Future with information Technology

LIST OF PRACTICALS

1. Given a PC, name its various components and peripherals. List their functions
2. Practice in installing a computer system by giving connection and loading the system software and application software
3. Exercises on entering text and data (Typing Practice)
4. Installation of operating System viz. Windows XP, Windows 2007 etc..
 Features of Windows as an operating system
 - Start
 - Shutdown and restore
 - Creating and operating on the icons
 - Opening closing and sizing the windows
 - Using elementary job commands like – creating, saving, modifying, renaming, finding and deleting a file
 - Creating and operating on a folder
 - Changing setting like, date, time, colour (back ground and fore ground)
 - Using short cuts
 - Using on line help
5. MS-Word
 - File Management:
 - Opening, creating and saving a document, locating files, copying contents in some different file(s), protecting files, Giving password protection for a file
 - Page Set up:
 - Setting margins, tab setting, ruler, indenting
 - Editing a document:
 - Entering text, Cut, copy, paste using tool- bars
 - Formatting a document:
 - Using different fonts, changing font size and colour, changing the appearance through bold/ italic/ underlined, highlighting a text, changing case, using subscript and superscript, using different underline methods
 - Aligning of text in a document, justification of document, Inserting bullets and numbering
- Formatting paragraph, inserting page breaks and column breaks, line spacing
- Use of headers, footers: Inserting footnote, end note, use of comments
- Inserting date, time, special symbols, importing graphic images, drawing tools
- Tables and Borders:
 - Creating a table, formatting cells, use of different border styles, shading in tables, merging of cells, partition of cells, inserting and deleting a row in a table
- Print preview, zoom, page set up, printing options
- Using Find, Replace options
- Using Tools like:
 - Spell checker, help, use of macros, mail merge, thesaurus word content and statistics, printing envelopes and tables
- Using shapes and drawing toolbar,
- Working with more than one window in MS Word,
- How to change the version of the document from one window OS to another
- Conversion between different text editors, software and MS word

6. MS-Excel
- Starting excel, open worksheet, enter, edit, data, formulae to calculate values, format data, create chart, printing chart, save worksheet, switching between different spread sheets
- Menu commands:
 - Create, format charts, organise, manage data, solving problem by analyzing data, exchange with other applications. Programming with MS-Excel, getting information while working
- Work books:
 - Managing workbooks (create, open, close, save), working in work books, selecting the cells, choosing commands, data entry techniques, formula creation and links, controlling calculations, working with arrays
- Editing a worksheet, copying, moving cells, pasting, inserting, deletion cells, rows, columns, find and replace text, numbers of cells, formatting worksheet
- Creating a chart:
 - Working with chart types, changing data in chart, formatting a chart, use chart to analyze data
- Using a list to organize data, sorting and filtering data in list
- Retrieve data with query: Create a pivot table, customising a pivot table. Statistical analysis of data
- Exchange data with other application: embedding objects, linking to other applications, import, export document.

7. MS PowerPoint
a) Introduction to PowerPoint
 - How to start PowerPoint
 - Working environment: concept of toolbars, slide layout, templates etc.
 - Opening a new/existing presentation
 - Different views for viewing slides in a presentation: normal, slide sorter etc.

b) Addition, deletion and saving of slides

c) Insertion of multimedia elements
 - Adding text boxes
 - Adding/importing pictures
 - Adding movies and sound
 - Adding tables and charts etc.
 - Adding organizational chart

d) Formatting slides
 - Using slide master
 - Text formatting
 - Changing slide layout
 - Changing slide colour scheme
 - Changing background
 - Applying design template

e) How to view the slide show?
 - Viewing the presentation using slide navigator
 - Slide transition
 - Animation effects etc.

8. Working with MS Access
 a) Understanding different data types
 b) Creation of table
 c) Entering data in a table and modify it.
 d) Creating simple Queries

9. Internet and its Applications
 a) Log-in to internet
 b) Navigation for information seeking on internet
 c) Browsing and down loading of information from internet
d) Sending and receiving e-mail
 - Creating a message
 - Creating an address book
 - Attaching a file with e-mail message
 - Receiving a message
 - Deleting a message

INSTRUCTIONAL STRATEGY

Since this subject is practice oriented, the teacher should demonstrate the capabilities of computers to students while doing practical exercises. The students should be made familiar with computer parts, peripherals, connections and proficient in making use of MS office, MS Excel, MS Power Point and MS Access in addition to working on internet. The student should be made capable of working on computers independently.

RECOMMENDED BOOKS

1) Fundamentals of Computer by V Rajaraman; Prentice Hall of India Pvt. Ltd., New Delhi
2) Information Technology for Management by Henery Lucas, 7th edition, Tata Mc Graw Hills, New Delhi
6) Internet for Every One by Alexis Leon and Mathews Leon; Vikas Publishing House Pvt. Ltd., Jungpura, New Delhi
7) A First Course in Computer by Sanjay Saxena; Vikas Publishing House Pvt. Ltd., Jungpura, New Delhi
8) Mastering Windows 97, BPB Publication, New Delhi
9) Computer Fundamentals by PK Sinha; BPB Publication, New Delhi
11) On Your Marks - Net...Set...Go... Surviving in an e-world by Anushka Wirasingha, Prentice Hall of India Pvt. Ltd., New Delhi
13) Fundamentals of Information Technology by Vipin Arora, Eagle Parkashan, Jalandhar